One‐Dimensional Earth‐Abundant Nanomaterials for Water‐Splitting Electrocatalysts

نویسندگان

  • Jun Li
  • Gengfeng Zheng
چکیده

Hydrogen fuel acquisition based on electrochemical or photoelectrochemical water splitting represents one of the most promising means for the fast increase of global energy need, capable of offering a clean and sustainable energy resource with zero carbon footprints in the environment. The key to the success of this goal is the realization of robust earth-abundant materials and cost-effective reaction processes that can catalyze both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), with high efficiency and stability. In the past decade, one-dimensional (1D) nanomaterials and nanostructures have been substantially investigated for their potential in serving as these electrocatalysts for reducing overpotentials and increasing catalytic activity, due to their high electrochemically active surface area, fast charge transport, efficient mass transport of reactant species, and effective release of gas produced. In this review, we summarize the recent progress in developing new 1D nanomaterials as catalysts for HER, OER, as well as bifunctional electrocatalysts for both half reactions. Different categories of earth-abundant materials including metal-based and metal-free catalysts are introduced, with their representative results presented. The challenges and perspectives in this field are also discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بهینه‌سازی ترکیب نانوساختار کربنی به عنوان زیر لایه در رشد الکتروکاتالیست‌های کبالت

Global warming and other adverse environmental effects of fossil fuels have forced humans to consider clean and renewable energy resources. In this context, hydrogen production from water splitting reaction is a key approach. In order to reduce required overpotential for water oxidation reaction, it is necessary to use low cost and earth abundant electrocatalysts like Co, Cu, Fe, Mn, Ni and Zn ...

متن کامل

Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution

Electrochemical water splitting is one of the most economical and sustainable methods for large-scale hydrogen production. However, the development of low-cost and earth-abundant non-noble-metal catalysts for the hydrogen evolution reaction remains a challenge. Here we report a two-dimensional coupled hybrid of molybdenum carbide and reduced graphene oxide with a ternary polyoxometalate-polypyr...

متن کامل

Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting

Developing earth-abundant, active and stable electrocatalysts which operate in the same electrolyte for water splitting, including oxygen evolution reaction and hydrogen evolution reaction, is important for many renewable energy conversion processes. Here we demonstrate the improvement of catalytic activity when transition metal oxide (iron, cobalt, nickel oxides and their mixed oxides) nanopar...

متن کامل

Novel Fully Organic Water Oxidation Electrocatalysts: A Quest for Simplicity

Despite the growing need for readily available and inexpensive catalysts for the half-reactions involved in water splitting, water oxidation and reduction electrocatalysts are still traditionally based on noble metals. One long-standing challenge has been the development of an oxygen evolution reaction catalyzed by easily available, structurally simple, and purely organic compounds. Herein, we ...

متن کامل

Photoelectrochemical water splitting: silicon photocathodes for hydrogen evolution

The development of low cost, scalable, renewable energy technologies is one of today’s most pressing scientific challenges. We report on progress towards the development of a photoelectrochemical water-splitting system that will use sunlight and water as the inputs to produce renewable hydrogen with oxygen as a by-product. This system is based on the design principle of incorporating two separa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017